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The onset and the form of surface-tension-driven convection in three different small 
circular and one small square container has been studied experimentally. In the 
smallest circular container, with increasing aspect ratio, the pattern consisted of first 
a circular roll and then segments of a circle outlined by different numbers of 
azimuthal nodal lines, with up to six segments. Simple solutions in the square 
container were the one-cellular pattern and a pattern consisting of four square cells. 
Unexpected solutions formed when the number of the cells in the square container 
was not a square number. When the aspect ratio permitted two cells, two triangular 
cells were observed. With space for three cells, one square cell and two wedge-shaped 
cells formed. The onset of convection in all fluid layers was characterized by a steep 
increase of the critical Marangoni number with decreasing aspect ratio. 

1. Introduction 
As is well known, the cause of the formation of the hexagonal convection cells 

observed by BBnard (1900) is surface tension, or more accurately, the variation of the 
surface tension coefficient with temperature, as was established theoretically by 
Pearson (1958). The tendency to form hexagonal convection cells when the fluid layer 
is under an air surface and convection is caused by heating from below is so clearly 
apparent, that one can say that the hexagonal cell form is the unique solution of the 
pattern selection mechanism ; even though many of the observed patterns are more 
polygonal than hexagonal, presumably because of imperfections of the supposedly 
uniform temperatures either beneath or above the fluid. One wonders whether the 
tendency to form hexagonal cells is still prevalent when geometric constraints by 
nearby walls in small containers make the hexagonal form less likely. We have, 
therefore, made a series of experiments trying to gain insight into the formation of 
the patterns, and the preference for the hexagonal cells. The onset and the form of 
surface-tension-driven BBnard convection in small circular and rectangular con- 
tainers has been studied theoretically by Rosenblat, Davis & Homsy (1982) and by 
Rosenblat, Homsy & Davis (1982). They predict that in small circular containers 
motion will occur in cells whose boundaries are either circular concentric, or given by 
azimuthal nodal lines, so that the cells appear like pieces of pie. In rectangular 
containers they predict the appearance of roll type cells whose axes are aligned with 
the shorter dimension of the rectangular container, similar to the planform of 
convection in rectangular containers in Rayleigh-Be'nard convection, which were 
studied by Davis (1967). Besides the form of the motion, Rosenblat et al. predict the 
values of the critical Marangoni number required for onset of convection, in the 
absence of buoyancy, i.e. in the case where the Rayleigh number is zero. 
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number is given by 

dS ATd Ma = -__ 
d T  PVK ’ 

number is given by 

agATd3 R = - - -  
VK 

where dS/dT is the variation of the surface tension coefficient with temperature, AT 
the temperature difference applied to  the fluid, d the depth of the fluid, p the density 
of the fluid, a the volume expansion coefficient of the fluid, v the viscosity and K the 
thermal diffusivity of the fluid. Rosenblat et ul. (1982~)  predict, a very sharp increase 
of the critical Marangoni number with decreasing aspect ratio of the fluid, just as in 
the corresponding Rayleigh-Bdnard problem in rectangular containers (Davis 1967) 
and in circular containers (Charlson & Sani 1970). We will, in the following, discuss 
experiments which investigate the planform of the motion as well as the value of the 
critical Marangoni numbers for onset of surface-tension-driven convection in small 
circular containers, as well as in a square container. 

2. Description of the apparatus 
The apparatus is in essence the same apparatus as described in Koschmieder & 

Biggerstaff (1986), adapted to the work with small containers. Only the most 
important features can be discussed here, for a sketch of the original apparatus see 
Koschmieder & Biggerstaff. The bottom of the apparatus is a 5 em thick copper 
block of 17.8 em diameter which is heated electrically with a resistance wire. The top 
of the copper block should have a practically uniform temperature. On top of the 
copper block is a lucite frame with a circular inner opening of 13.55 em diameter. 
Into this opening and on top of the copper block we placed a bakelite plate of 8 mm 
thickness, into which three circular holes of different diameter and one square hole 
were cut. These holes received the small containers with which the experiments were 
made. The bakelite plate served as thermal insulation in the horizontal direction from 
one container to the others. The bakelite plate was covered with a glass plate of 
2.32 mm thickness. The glass plate was cooled by circulating water, and was, for all 
practical purposes, of uniform temperature, and fixed the temperature of the air on 
top of the fluid in the small containers. 

The bases of the four small fluid containers were made of brass, and were of the 
same thickness, so that the bottom temperatures of the fluid in the containers were 
all the same. The surfaces of the brass bases were polished to  a mirror finish. The 
circular bases were of 12.7 mm, 19.05 mm and 25.4 mm diameter; the sides of the 
square container were 12.7 mm long. The oil on top of the brass bases was confined 
laterally by lucite walls of 0.75 mm thickness in the case of the circular containers, 
and by a 1 mm thick seamless piece of square lucite for the square container. The 
walls were attached to  a step in the brass bases with a silicone rubber adhesive. The 
diameters of the fluid layers in the containers were then 11.2 mm for the small 
circular container, 17.5 mm for the medium circular container, 23.8 mm for the large 
circular container and 10.5mm for the square container. I n  each of the four 
containers was a fluid layer of the same depth; the depth was measured with a 
micrometer and was accurate to less than 0.025mm. I n  order to  reduce the 
consequences of the meniscus of the fluid layer on the onset and the form of the 
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V P a K s dS/dT 

cm2/s g/cm3 "C- I cmz/s dynelcm dynelcrn O C  

1 0.968 0.00096 0.001095 13.96 -0.050 

TABLE 1. Properties of the silicone oil at 25 "C 

motion of the fluid, the containers were always filled to the rim of the lateral wall, 
likewise with an accuracy of order of 0.025 mm. The properties of the fluid are listed 
in table 1. Flow visualization was achieved by aluminium powder suspended in the 
fluid. 

In order to vary the aspect ratio of the fluid layer, the depth of the fluid had to 
be varied, and therefore also the height of the lateral wall, if the containers were to 
be filled to the rim. It was also desirable to maintain, in a first approximation, the 
depth of the air layer between the fluid surface and the glass lid for the different 
aspect ratios of the fluid layers because the depth of the air layer is very important 
for the determination of the temperature differences across the fluid. The temperature 
difference across the fluid has to be calculated from the temperature difference 
between the brass bases and the cooling water, and follows from the formula 

where ATbw is the measured temperature difference between the cooling water and 
the brass bottom, h stands for the thermal conductivity of the particular medium, 
and AZ for the thickness of the various layers. Large air gaps permit a relatively 
accurate determination of the depth of the air gap, but most of the temperature 
difference between the glass lid and the brass bottom falls off in the air, and therefore 
the determination of AT across the fluid becomes relatively inaccurate. On the other 
hand, a very small air gap introduces a relatively large inaccuracy in the 
determination of the depth of the air, which again causes a large uncertainty in AT, 
The depth of the air was therefore held a t  around 0.5mm. That required, in 
particular with the small aspect ratios, that the thickness of the brass bases had to 
be changed when the aspect ratio of the fluid layer was changed. Using the described 
arrangement with the four different containers made it possible to study 
simultaneously the onset of convection and the planform of motion in three circular 
containers with different aspect ratios and one square container while exactly the 
same vertical temperature difference was applied to all of them. 

3. The experiments 
3.1. Pattern formation 

We begin with experiments with small aspect ratio. We define the aspect ratio A as 
the ratio of the width of the fluid layer divided by the depth of the fluid. In circular 
containers we use for the width the diameter of the fluid layer, which practice differs 
from the definition of the aspect ratio in Rosenblat et al. (1982a), they use the radius 
of the fluid layer instead of the diameter. Using the radius for the determination of 
the aspect ratio introduces a difference of a factor two in the aspect ratios of circular 
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and square containers of nearly equal size. I n  rectangular containers the aspect ratio 
is traditionally the ratio of the horizontal distance between opposite walls and the 
depth of the fluid. 

Since the diameters of the circular containers in our experiments were given, a 
small aspect ratio meant in our experiments a comparatively large depth of the fluid, 
which necessarily makes the Rayleigh number comparatively large, because of the 
dependence of the Rayleigh number on the third power of the depth. I n  the smallest 
circular container with the greatest fluid depth we observed onset of convection and 
moderately supercritical convection in the form of one circular roll, see figure 1 (a). 
Onset of convection was not a spontaneous event, rather the formation of the roll 
could be observed over a large interval in the applied vertical temperature difference. 
This is, in all likelihood, due to  the presence of the lateral wall; similar wall effects 
have occurred in all our previous convection experiments, regardless of whether they 
deal with surface-tension-driven convection or Rayleigh-BBnard convection. An 
entire series of premature rolls under an air surface has been described in 
Koschmieder (1967). Over a wide range of aspect ratios ranging from A = 1.94 to A 
= 4.3 only one circular roll appeared. The appearance of the circular roll as the first 
pattern at A = 1.94 differs from the results of the calculations of Rosenblat et al. 
(1982a), shown on figure 1 of their paper. For their a = 1, which is here A = 2, the 
only unstable pattern is a pattern with one azimuthal nodal line and one radial 
wavenumber. We note that this result is based on the assumptiorP of zero Rayleigh 
number, no meniscus and adiabatic slip lateral boundary conditions, as well as zero 
capillary number, which means an inflexible fluid surface. In our experiments with 
A x 2 the Rayleigh number is certainly not negligible, the meniscus is practically 
non-existent, the lateral boundary cannot practically be made strictly adiabatic, the 
lateral boundary condition is no-slip, and the fluid surface is flexible. The upper 
boundary condition in our experiments complies with the insulating (L  = 0) upper 
boundary used in theory, our lower boundary will be of uniform temperature, as 
theory assumes. It appears that  strict quantitative agreement between theory and 
experiment cannot be expected. 

Decreasing the fluid depth or increasing the aspect ratio produced a two-cellular 
pattern in the small container at A = 5.31, see figure 1 (b).  With this aspect ratio the 
stability curves in figure 1 of Rosenblat et al. (1982a) overlap practically, but the 
pattern with four azimuthal wavenumbers seems to be the predicted critical pattern. 
It will, for this A ,  be quite difficult to establish agreement between theory and 
experiment, considering the differences between the ideal assumptions of theory and 
practical necessities of experiments. With A = 6.05 we obtained either two or three 
cells, and with A = 6.4 and 6.59 we always obtained three cells (see figure l c ) .  We 
have also observed completely regular three-cell patterns in the medium and large 
size circular container (see figures 3a, b ) .  With A = 6.79 and A = 7.37 we found very 
regular four-cell patterns (figure l d ) ,  with A = 8.62, we had five-cell patterns (figure 
l e ) ,  and with A = 8.96 we had either 5 or 6 cells (figure lf) ,  which appeared with 
equal probability. Decreasing the Auid depth by only 0.05 mm, which meant at an 
aspect ratio A = 9.33, we arrived a t  a seven-cell pattern (figure l g ) ,  where the cell 
boundaries were no longer exclusively azimuthal nodal lines. Rather the pattern then 
consisted of one truly hexagonal centre cell, surrounded by 6 regular boundary cells 
which had only 5 vertices. On figure 1(g) one can also see the direction of motion in 
the cells. The fluid is rising in the centre of the hexagonal cell, as well as in the centres 
of the boundary cells. The fluid sinks along the cell boundaries and along the 
container wall. The location of the ascending fluid is indicated on the photographs by 
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FIQURE 1 .  The patterns in the small circular container. (a )  One-cell solution. M = 330, H = 396, 
A = 4.32. ( b )  Two-cell solution. M u  = 81, R = 65, A = 5.31. (c) Three-cell solution. Mu = 76.5, 
R = 40, A = 6.59. ( d )  Four-cell solution. M u  = 78, R = 38, A = 6.79. ( e )  Five-cell solution. Ma = 71, 
R = 21, A = 8.62. (f) Six-cell solution. M u  = 74, R = 21, A = 8.96. (9) Seven-cell solution. Ma = 67, 
R = 19, A = 8.96. 
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small (black) lumps of aluminium powder under the centres of the cells. Some 
aluminium powder settles after a while under the locations of ascending motion. The 
accumulations of aluminium powder can also be seen in the other patterns shown in 
figure 1. 

Summarizing the results concerning the pattern formation in the small circular 
container, we find a steady progression of the number of azimuthal nodes in the fluid 
flow with increased aspect ratio. If, finally, the slices formed by the azimuthal nodes 
became too elongated, the fluid reverted to the formation of a hexagonal centre cell, 
surrounded symmetrically by boundary cells. 

While the pattern formation in the small circular container seemed to be straight- 
forward, the patterns in the square container are a quite different matter because the 
fluid has to respond to the delicate question of how to fill a given square area with, 
e.g. odd numbers of equivalent cells, or likewise with even numbers of cells, 
exempting those odd or even numbers which are squares, where the fluid obviously 
has no problems filling a square area with equal cells. We will see that the fluid solves 
the posed question in a quite unexpected way. 

Beginning with an aspect ratio A = 1.82, we found one-cellular square cell 
patterns, as shown in figure 2 ( a ) .  In  this figure the fluid rises at the centre of the 
layer, where the fluid surface is depressed, as was observed visually. The bright ring 
encircling the centre of the fluid at around half way to the rim indicates the location 
of maximal elevation of the surface. The fluid sinks along the rim of the container. 
We note here that the depression of the fluid surface was already noticeable a t  a 
seventh of the temperature difference at which the photograph figure 2 (a)  was taken. 
A picture of such subcritical flow is shown later in figure 4 ( 6 ) .  The dark crossed lines 
going away from the centre of the layer were established a t  twice the temperature 
difference at which the depression of the fluid surface was first noticed. It may be 
that the vertical temperature difference was already critical when the dark crossed 
lines appeared ; visual observation is simply inadequate to answer this question, 
although the motion of the aluminium particles in the fluid was still creeping when 
the cross at  the centre of the layer appeared. Motion of the particles was observed 
only a t  around the temperature difference a t  which figure 2(a) was taken. Because 
of the difficulty in deciding visually the onset of convection, we do not give an 
apparent critical AT for the square pattern. One-cellular square patterns appeared 
also with the aspect ratios A = 2.49 and A = 4.05. 

At an aspect ratio A = 4.98 when in the small circular container the two-cellular 
pattern was found, a two-cellular pattern was also formed in the square container. 
The pattern consisted of two triangular cells, as shown with a different aspect ratio 
in figure 2 ( b ) .  It appears that the fluid prefers this pattern to a solution consisting 
of two parallel rolls, which is geometrically a possibility, and has been discussed by 
Rosenblat et aZ. (1982b). Flow, as in figure 2 ( b ) ,  is rising in the darker areas in the 
interior of the triangular cells, and sinking along the diagonal of the container and 
along the rim of the container. The critical condition in this geometry was marked 
by the formation of the diagonal cell boundary. 

At A = 4.98 we observed also three-cellular patterns in the square container. Such 
a pattern is shown in figure 2 ( c ) ;  it  consists of a square cell in one corner of the 
container and two wedge-shaped cells filling the rest of the available space. Flow is 
upwards in the cell centres and downwards at the cell boundaries. This very unusual 
and unexpected flow was first considered to be an erroneous result, but since i t  is 
reproducible and since it is convincingly supported by the form of the six-cellular 
flow in the square container, the pattern in figure 2(c) apparently is the solution 
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FIQURE 2. The patterns in the square container. (a)  One-cell solution. Mu = 380, R = 228, 
A = 1.82. (b )  Two-cell solution. Mu = 54, R = 33, A = 5.68. (c) Three-cell solution. Mu = 80, R = 42, 
A = 6.18. (d) Four-cell solution. Mu = 78. R = 38, A = 6.36. ( e )  Five-cell solution. Mu = 67, R = 19, 
A = 8.4. (f)  Six-cell solution. Just  critical. Mu = 72, R = 22, A = 8.08. (9)  Eight-cell solution. 
MU = 63, R = 16, A = 8.75. 
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of the pattern selection mechanism if the aspect ratio provides space for three 
cells. 

At A = 6.36 and A = 6.9 four regular square cells filled the square container, see 
figure 2(d). This picture was taken in the same experiment and a t  the same 
temperature difference as the photograph of the four-cell pattern in the small circular 
container shown in figure l (d ) .  Note the implication of this pattern for the 
wavelength of the motions. At A = 6.36 the observed critical wavelength in this 
experiment is A, = 3.18. According to Nield (1964), the critical wavelength for a 
conducting 'free ' surface (L = 00)  of surface-tension-driven convection is A, = 3.014, 
markedly different from the critical wavelength in Rayleigh-Be'nard convection, 
which for rigid-rigid boundaries is A, = 2.016 (Chandrasekhar 1961). In  our previous 
experiments (Koschmieder 1967), we found critical wavelengths ranging from A, = 
2.70 to A, = 3.12, for fairly large fluid layers. We note that the theoretical critical 
wavelengths mentioned refer to infinite fluid layers, and that the presence of the 
lateral walls can certainly affect the value of A,. The requirement that  only even 
numbers of cells fill a container introduces also a principal uncertainty into the 
determination of A, which is AA = + A / 2 N ,  where N is the number of pairs of cells in 
the layer. AA is 0.795 in the case A = 6.36. 

At A = 8.08 the square container exhibited either five or six cells. In the five-cell 
solution the innermost cell was a square cell (figure 2 e ) ,  whose lateral boundaries 
were not parallel to the rim of the square container. The rest of the available space 
was filled with four boundary cells which had five vertices each. This pattern is fairly 
similar to the seven-cell solution in the circular container (figure l g ) ;  both 
photographs were taken in the same experiment a t  the same temperature difference. 
The six-cell pattern in the square container (figure 2f) consists of two square cells in 
opposite corners of the container; the rest of the space is filled with four wedge- 
shaped cells which we have already encountered in the three-cell pattern (figure 2c). 
The six-cell pattern seems to  be a doubled three-cell pattern. 

An easy way for the fluid to fill the square container with equal cells would have 
been the nine square-cell pattern. With A = 8.75 we did not, however, obtain nine 
square cells, but rather an eight-cell solution, consisting of four square cells in the 
corners of the container and four pentagonal cells whose tips met in the centre of.the 
layer, see figure 2 (9). Although there seemed to be sufficient space to form a square 
cell in the centre of the layer, the fluid consistently preferred this eight-cellular 
pattern. We assume that a nine-cellular square pattern will eventually appear with 
larger aspect ratios, which we could not realize because the critical temperature 
differences would then have exceeded safe operating conditions in our apparatus 
(AT ;4; 40 "C). 

Looking now at the flows in the larger circular containers when the fluid was 
relatively deep, we found patterns we have already described in figure l(a-g). As 
examples we show in figures 3 (a) and 3 (b )  the three-cellular pattern as it appeared 
in the medium and large circular containers. The aspect ratios in these two cases were 
A = 8.29 and A = 5.64. The aspect ratio of the three-cellular pattern in the medium 
container was unusually large, at the same A we have also observed four-cellular 
patterns in this container. Note however that A = 8.29 corresponds to the upper end 
of A for the three-cellular pattern permitted by the principal uncertainty of the 
wavelength for three-cellular flow in bounded containers. In  this case AAlA = k0.30. 
Because of the magnitude of the principal uncertainty of the wavelength a three- 
cellular pattern at A = 8.29 is compatible with the three-cellular pattern we have 
found in the small container a t  A = 6.4 (figure 1 c ) .  The figures 3 (a )  and 3 ( b )  together 
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FIGURE 3. Patterns in the medium and large circular container. (a) Three-cell solution in the 
' medium container. Ma = 74, R = 59, A = 8.29. The fluid rises in the centres of the three cells and 

sinks along the wall and the three nodal lines. ( b )  Three-cell solution in the large container. Ma = 
109, R = 352, A = 5.64. (c). The 2-8 cell solution in the medium container. Mu = 69, R = 33, A = 
10.8. The fluid is 1.62 mm deep, the inner diameter of the container is 17.5 mm. (d )  The 4-10-cell 
solution in the medium container. Mu = 75, R = 23, A = 13.46. The fluid is 1.30 mm deep. (e) The 
14-12 solution in the large container. Mu = 88, R = 27, A = 18.31. The fluid is 1.30 mm deep, the 
inner diameter of the container is 23.8 mm. 
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FIGURE 4. (a) Subcritical rolls in the small circular container. Ma = 53, R = 14, A = 9.33. 
(6) Subcritical flow in the square container. Mu = 24, R = 7.4, A = 8.08. 

with figure 1 ( c )  show that the same patterns appear in all three circular containers, 
if only the fluid depth is chosen correctly so that the aspect ratios are compatible. 

For aspect ratios larger than 9.3, at which in the small circular container the seven- 
cell solution (figure l a )  appeared, we found patterns with more than one cell a t  the 
centre of the layer, an example of a 2-8 pattern is shown in figure 3 ( c ) .  There were 
also 3-9 patterns and 4-10 patterns, see figure 3 ( d ) .  I n  the largest circular container 
with thin fluid layers, cells arranged in three concentric rings appeared. We want to 
show only the first such pattern, the 1-6-12 cell form (figure 2e). Decreasing the fluid 
depth further created a multiplicity of solutions which emphasize the hexagonal cell 
form. This could not be pursued further. 

Finally, we want to discuss the subcritical motions which occurred in all containers 
and accompanied the formation of all patterns. I n  the circular containers the 
subcritical motions consisted of circular concentric rolls; an example of such a flow 
is shown in figure 4(a). Such subcritical rolls appear to be the same motions that we 
have observed earlier (Koschmieder 1967), where we observed up to fifteen concentric 
rolls under an air surface. Note that the fluid is far from the critical condition for 
Rayleigh-BQnard convection with a free upper surface. There was, in the 1967 
experiment, as well as in the present experiments, very little horizontal non- 
uniformity of the temperature field. The lateral wall in both experiments is, of course, 
not perfectly adiabatic ; no lateral wall is. Subcritical motions appeared likewise in 
the square container, already at very low temperature differences, in the form of the 
diagonal cross shown in figure 4 (b ) .  The flow indicated by the dark cross is creeping ; 
actual motion of the particles in the fluid could never be seen. 

3.2. The critical condition 

The critical condition of the fluid in the containers was determined visually. It was 
indicated by the completion of the pattern formation. The patterns do not form 
spontaneously over the entire layer, but form a t  the wall and progress towards the 
centre of the layer. The decision that the formation of a pattern is completed is, of 
course, somewhat subjective and accompanied by a fairly large uncertainty in AT 
which can easily be 10% and in some cases, such as the one-cellular patterns, may 
be much more than 10 %. The objective way to determine the onset of convection is 
through heat transfer measurements. We have tried those with a method similar to 
the method employed in the heat transfer measurements of Koschmieder & Pallas 
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FIQURE 5. The Marangoni numbers at the onset of convection in the different containers and with 
different aspect ratios. The numbers at the points of the small container indicate the numbers of 
cells. 

(1974). As it turned out, the amount of heat transferred by the fluid in these small 
containers is so small that the voltage created by the heat sensor is too small in 
comparison with the outside electrical noise. 

The Marangoni numbers determined from the temperature differences at which the 
patterns established are plotted in figure 5 as a function of the aspect ratio for all 
containers. While for A 2 5 the contribution of the Rayleigh number on the onset of 
convection is practically negligible, this is not so for A < 5.  Besides, at the small 
values of A the uncertainty of the determination of the critical condition becomes 
very large; the one-cellular pattern in the circular container exists almost from the 
beginning of heating. One has to use the appearance of visible motion as the criterion 
for the critical condition in that case. These problems are even worse with the square 
container ; we did not, therefore; determine the critical condition in small-aspect- 
ratio experiments with the square container. A t  the small aspect ratios plotted on 
figure 5 ,  our observations can only be used as a qualitative indication that the critical 
Maragoni number increases significantly above the value of Ma, for infinite fluid 
layers, as was found by Rosenblat et al. ( 1 9 8 2 ~ ) .  

For aspect ratios A > 5 ,  the critical Marangoni numbers approach steadily a value 
Ma, x 60. This value is below the expected critical Marangoni number Ma, = 79.5 for 
infinite fluid layers. There may be two reasons for this discrepancy. There is an 
experimental uncertainty of about 15 YO in the determination of the Marangoni 
number because of the uncertainty of the material constants of the fluid and the 
uncertainty in the value of the temperature difference. The value of M / d T  is not 
known with an accuracy better than 5%, and the observed critical temperature 
differences have a statistical uncertainty of + 3  % when A > 5. The viscosity as well 
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as the thermal diffusivity of the fluid is not known with an accuracy better than 
k 1 % either. The applied temperature difference, calculated with equation (3), is 
uncertain by up to 5%. It may also be that the critical Marangoni number 
determined theoretically does not apply strictly to our experiments, because of 
assumptions in the theory which we do not fulfil. We do not mean in this case the 
consequences of the presence of gravity, which have been calculated by Nield (1964). 
For the largest containers used in our experiments, the Rayleigh numbers at onset 
of convection are so small that they cannot explain the change from Ma, (theor) to 
Mu, (exp). One can argue that small horizontal temperature gradients present in the 
fluid may cause an onset of convection at smaller Marangoni numbers. We note, 
however, that  the critical Marangoni numbers which we found with the same oil in 
experiments with aspect ratios ranging from A = 75 to A = 188 were also low, 
ranging from Ma, = 61 to Mu, = 48 (Koschmieder & Biggerstaff 1986). The fact that 
we found critical Marangoni numbers of order 60 in the experiments with very large 
aspect ratios practically eliminates horizontal temperature gradients as the source of 
the low-value critical Marangoni numbers in our experiments with the small 
containers. Therefore, we cannot give an explanation for the deviation of the 
observed value of Ma, with the largest aspect ratios we used from the theoretical 
value of Mu, for an infinite fluid layer. 

4. Conclusions 
In our experiments studying surface-tension-driven convection in small circular 

containers we observed a steady increase of the number of azimuthal nodes or cell 
boundaries from zero on, when we decreased the depth of the fluid layer. Doing so 
we used always one and the same circular container and arranged that the fluid 
always filled the container to the rim, and that the thickness of the thin layer of air 
on top of the fluid remained about the same. Only after the fluid had formed the six- 
cell pattern with exclusively azimuthal boundaries did, after further decrease of the 
fluid depth, a pattern appear with a radial node, making space for a hexagonal centre 
cell surrounded by six boundary cells which were separated by azimuthal nodal lines. 
Although the order of appearance of the patterns may be different from the order of 
appearance predicted by Rosenblat et al. (1982u), it appears that the form of the 
patterns we observed corresponds to the theoretical expectations. The order of 
appearance of the patterns in our experiments may be influenced by the lateral 
boundary conditions and by buoyancy effects. Rosenblat et al. use highly simplified 
lateral boundary conditions. In  the corresponding Rayleigh-Be'nard convection 
problem simplified lateral boundary conditions, as studied by Rosenblat (1982), and 
no-slip boundary conditions, as studied by Charlson & Sani (19711, give different 
sequences of modal transitions. 

The form of the patterns we observed in the square container was a surprise ; it 
does not seem that, for example, the appearance of two triangular cells in the square 
container was anticipated. Even more so with the form of the three-cell and the six- 
cell solution in the square container. On the other hand, in the one-cell and the four- 
cell eases the fluid formed square cells in the interior of the container, as could be 
expected. As far as the order of appearance of the different patterns was concerned, 
the number of cells increased steadily with decreased fluid depth in one and the same 
container, just as it was with the circular container, employing the same precautions 
as with the circular container. A comparison of our results with the theoretical results 
of Rosenblat et al. (1982b) does not seem to be appropriate, because they consider 
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rectangular containers, of which the square planform is only a very degenerated 
special case. It would be very instructive to know also the form of the pattern in 
either square or rectangular containers of small aspect ratio in buoyancy-driven 
Rayleigh-Be'nard convection. A systematic experimental investigation of such flows 
has, to our knowledge, not yet been made. The consequences of either rigid or slip 
lateral boundaries for surface-tension-driven convection in rectangular containers 
have been studied by Dijkstra & van de Vooren (1989). The bifurcations occurring 
in a two-dimensional rectangular cavity of aspect ratio 2, in either surface-tension or 
buoyancy-driven flow, have been studied by Winters, Plesser & Cliffe (1988). 

Concerning the onset of convection as a function of the aspect ratio of the layer, 
our measurements confirm in a qualitative way the strong increase of the critical 
Marangoni number when the aspect ratio decreases to small values of A ,  as has been 
predicted by Rosenblat et al. ( 1 9 8 2 ~ ) .  

We thank Mr J. D. Campbell for help with the experiments. Support of this work 
through the National Aeronautics and Space Agency is gratefully acknowledged. 
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